1,096 research outputs found

    Quantifying nanoscale carrier diffusion with ultrafast optical and photocurrent microscopy

    Get PDF
    Aplicat embargament des de la data de defensa fins el 30 de setembre de 2019Heat transport in solids is one of the oldest problems in physics, dating back to the earliest formulations of thermodynamics. The classical laws of heat conduction are valid as long as the observed time and length scales are larger than the relaxation time and mean free path of the underlying microscopic heat carriers, such as electrons and phonons. With the advent of ultrafast lasers and nanoscale systems these regimes can now be surpassed and new refined models of heat transport are needed. In particular, the interaction of ultrashort light pulses with matter can excite electrons to high temperatures, leading to a local non-equilibrium of electrons and phonons. Under these conditions, also the transport properties of the carriers are altered. So far, these effects have typically been studied in the time domain. The cooling of photo-excited hot electrons has been studied both in metals as well as novel 2D materials, such as graphene. However, due to a lack of spatio-temporal resolution, it has not been possible to distinguish the effects of hot-electron diffusion from other cooling mechanisms, such as electron-phonon coupling. In this thesis, I directly track such ultrafast heat and carrier diffusion in space and time with ultrafast microscopy. By using the recently developed technique of probe-beam-scanning transient-absorption microscopy on thin gold films I directly resolve, for the first time, a transition from hot-electron diffusion to phonon-limited diffusion on the picosecond timescale. I support the understanding of these complex dynamics by theoretical modeling of the thermo-optical response based on a two-temperature model. I apply the same technique to study hot carrier diffusion in atomically thin monolayer graphene. By comparing differently prepared samples, I study the strong influence of external parameters, such as production type, substrate, and environment on carrier diffusion. Finally, I study hot carrier diffusion in exfoliated and encapsulated graphene devices with a novel technique of ultrafast spatio-temporal photocurrent microscopy based on the photothermoelectric effect. I extract diffusion dynamics for electrically characterized samples with the help of theoretical spatio-temporal modeling, thereby testing the fundamental relationship between electrical and thermal carrier transport. The precise quantification of ultrafast and nanoscale carrier transport with these state-of-the-art techniques leads to a broader understanding of non-equilibrium dynamics and could ultimately help the design, optimization, and heat management of the next generation of ultra-compact (opto-) electronic devices, such as solar cells, photodetectors, or integrated circuits.El transporte de calor en sólidos es uno de los problemas más antiguos de la física, que se remonta a las primeras formulaciones de la termodinámica. Las leyes clásicas de la conducción de calor son válidas cuando las escalas de tiempo y longitud observadas sean mayores que el tiempo de relajación y la trayectoria libre media de los portadores de calor microscópicos subyacentes, como los electrones y los fonones. Con la llegada de los láseres ultrarrápidos y los sistemas a nanoescala, estos regímenes ahora pueden superarse por lo cual se necesitan nuevos modelos refinados de transporte de calor. En particular, la interacción de pulsos de luz ultracortos con la materia puede excitar electrones a altas temperaturas, lo que lleva a un desequilibrio local de electrones y fonones. En estas condiciones, también se modifican las propiedades de transporte de los portadores de calor. Hasta ahora, estos efectos han sido típicamente estudiados en el dominio del tiempo. El enfriamiento de electrones calientes fotoexcitados se ha estudiado tanto en metales como en nuevos materiales bidimensionales, como el grafeno. Sin embargo, debido a la falta de resolución espacio-temporal, no ha sido posible distinguir los efectos de la difusión de electrones calientes de otros mecanismos de enfriamiento, como el acoplamiento de electrones y fonones. En esta tesis, hago un seguimiento directo de la difusión del calor y sus portadores en el espacio y el tiempo con microscopía ultrarrápida. Al utilizar la técnica recientemente desarrollada de microscopía de absorción transitoria con escaneo de sonda en películas de oro delgadas, resuelvo directamente, por primera vez, una transición de la difusión de electrones calientes a la difusión limitada por fonones en la escala de tiempo de picosegundos. Apoyo la comprensión de estas dinámicas complejas mediante el modelado teórico de la respuesta termo-óptica basada en un modelo de dos temperaturas. Aplico la misma técnica para estudiar la difusión de portadores calientes en una capa de grafeno atómicamente delgado. Al comparar muestras preparadas de manera diferente, estudio la fuerte influencia de los parámetros externos, como el tipo de producción, el sustrato y el entorno sobre la difusión del portador. Finalmente, estudio la difusión de portadores en dispositivos de grafeno exfoliados y encapsulados con una técnica novedosa de microscopía de fotocorriente espacio-temporal ultrarrápida basada en el efecto fototermoeléctrico. Extraigo dinámicas de difusión para muestras caracterizadas eléctricamente con la ayuda del modelado espacio-temporal teórico, probando así la relación fundamental entre el transporte eléctrico y térmico. La cuantificación precisa del transporte de los portadores ultrarrápido y a nanoescala con estas técnicas de vanguardia lleva a una comprensión más amplia de la dinámica del no equilibrio y podría, en última instancia, ayudar al diseño, la optimización y la gestión del calor de la próxima generación de dispositivos (opto-)electrónicos ultracompactos, como células solares, fotodetectores o circuitos integrados.Postprint (published version

    Agile Market Engineering: Bridging the gap between business concepts and running markets

    Get PDF
    The agile market engineering process model (AMEP) is built on the insight, that market design and development is a wicked problem. Electronic markets are too complex to be completely designed upfront. Instead, AMEP tries to bridge the gap between theoretic market design and practical electronic market platform development using an agile, iterative approach that relies on early customer feedback and continuous improvement. The AMEP model is complemented by several supporting software artifacts

    Computationally Relaxed Locally Decodable Codes, Revisited

    Full text link
    We revisit computationally relaxed locally decodable codes (crLDCs) (Blocki et al., Trans. Inf. Theory '21) and give two new constructions. Our first construction is a Hamming crLDC that is conceptually simpler than prior constructions, leveraging digital signature schemes and an appropriately chosen Hamming code. Our second construction is an extension of our Hamming crLDC to handle insertion-deletion (InsDel) errors, yielding an InsDel crLDC. This extension crucially relies on the noisy binary search techniques of Block et al. (FSTTCS '20) to handle InsDel errors. Both crLDC constructions have binary codeword alphabets, are resilient to a constant fraction of Hamming and InsDel errors, respectively, and under suitable parameter choices have poly-logarithmic locality and encoding length linear in the message length and polynomial in the security parameter. These parameters compare favorably to prior constructions in the poly-logarithmic locality regime

    Generative Modeling with Denoising Auto-Encoders and Langevin Sampling

    Full text link
    We study convergence of a generative modeling method that first estimates the score function of the distribution using Denoising Auto-Encoders (DAE) or Denoising Score Matching (DSM) and then employs Langevin diffusion for sampling. We show that both DAE and DSM provide estimates of the score of the Gaussian smoothed population density, allowing us to apply the machinery of Empirical Processes. We overcome the challenge of relying only on L2L^2 bounds on the score estimation error and provide finite-sample bounds in the Wasserstein distance between the law of the population distribution and the law of this sampling scheme. We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.Comment: 22 page

    Intrinsic Dimension Estimation

    Full text link
    It has long been thought that high-dimensional data encountered in many practical machine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to estimate the intrinsic dimension of a given population distribution from a finite sample. We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending only on the intrinsic dimension of the data

    Managed Query Processing within the SAP HANA Database Platform

    Get PDF
    The SAP HANA database extends the scope of traditional database engines as it supports data models beyond regular tables, e.g. text, graphs or hierarchies. Moreover, SAP HANA also provides developers with a more fine-grained control to define their database application logic, e.g. exposing specific operators which are difficult to express in SQL. Finally, the SAP HANA database implements efficient communication to dedicated client applications using more effective communication mechanisms than available with standard interfaces like JDBC or ODBC. These features of the HANA database are complemented by the extended scripting engine–an application server for server-side JavaScript applications–that is tightly integrated into the query processing and application lifecycle management. As a result, the HANA platform offers more concise models and code for working with the HANA platform and provides superior runtime performance. This paper describes how these specific capabilities of the HANA platform can be consumed and gives a holistic overview of the HANA platform starting from query modeling, to the deployment, and efficient execution. As a distinctive feature, the HANA platform integrates most steps of the application lifecycle, and thus makes sure that all relevant artifacts stay consistent whenever they are modified. The HANA platform also covers transport facilities to deploy and undeploy applications in a complex system landscape
    corecore